Monday, 13 June 2011

The Key to Automation

Every day seems to see new reports about incredible robots being developed. Robots that carry stuff for soldiers, robots that perform surgery, and robots that play football. It's all very exciting, but what we really need are robots to make our lives easier. To give us more time to do what we want. To do the mundane jobs and free us up to take on more creative work that robots can't do.

But how do we go about this? How do we bring robots and automation into our everyday lives, unless robot intelligence is significantly improved? Well, while this intelligence is improving at a rapidly accelerating pace, there is a huge potential for solving problems using simple, task repeating, programmable robotics.

The key is to standardize everything. We have to "put it on rails".

As an example, let's look at making an automated dish washing system.

We have dishwashers, but we still need to load and unload them. We need to develop 2 things. Firstly, we need a robot that can safely sort dishes no matter how randomly they're piled up, and insert them into their relevant areas of the dishwasher. Secondly, and this wouldn't be so difficult once the first stage was completed, is a mechanism for unloading the dishes and putting them away.

The important thing to note is that the kitchen would need to be designed with this in mind. In many solutions, we may need to consider our existing infrastructure. This needn't be as complex as it's made out to be, and would always pay off once a working automated system was integrated.

So you would need containers either side of the dishwasher, one for humans to pile up the dirty dishes, and one where the clean dishes would be stored permanently. This would make it easier than if the storage cupboard was, say, on the other side of the room to the dishwasher.

The next step, we could consider 2 options. The first is to standardize all our plates, cups, dishes, pots, pans, and cutlery, so that the loading robot would "recognize" them all. Alternatively, we may be able to develop robots that can recognize new items and program themselves "on the fly" to deal with them effectively. This would obviously be a little harder. To achieve the first step, all the dishes we use in a house could be embedded with RFID. The robot could also have powerful sensors similar to face recognition software many cameras currently have.

Within the dishwasher, every item would have a specified place. The robot would simply grab each item and move it to its "cleaning slot". Any odd items could occupy a separate platform within the dishwasher.

You get the idea. While it still has some creases to iron out, the point is that there is plenty that can be achieved with a minimal level of robot intelligence, if we standardize our practices and the environments that automation functions in. The same theory could be applied to transportation. It's baffling why trains are still driven by human beings, when a computer could control them perfectly.

If you think that giving computers so much responsibility is dangerous, it's because you've been conditioned to seeing machines that have been challenged by real life scenarios. The point is, these machines have been limited by the programming of humans. They have been put in situations where they have not been designed to cope with all possible scenarios. They were expected to work like humans, yet they were limited in the number of possible actions. Automation system designers need to limit the scenario to a set routine, as well as limiting the influence of external factors.

To put it another way, they need to simplify what a robot has to do, and design its environment to confine it, protecting it from the need to make decisions. We can do this by standardizing its interactions. This will allow us to bring automation into our lives in more ways than we ever thought possible, even at current technology levels.

Tuesday, 8 February 2011

The Evolution of Complexity

Photo by Alazar Kassahun on Unsplash

Matter Evolution

Since the first particles were set in motion, every action has been part of a chain reaction.

At first, there were the simplest of elementary particles in an empty universe. Hydrogen atoms — single electron entities, were the pinnacle of complexity.

Eventually, a few of them collided, stuck together, and formed more complex atoms, and then molecules. Well, it was a little more complicated than that, but you get the idea. These molecules accumulated until there were so many that gravity and magnetism began to have a significant effect. As the gravity increased, the mass increased, and nuclear fusion commenced. Star systems were born.

The planets continued a sequence of their own. Eventually molecules increased in complexity by way of chemical reactions in order to form amino acids which then combined to create proteins.

These proteins and amino acids increased in complexity until living cells emerged from the chemical process.

Life started simple — with single cell organisms converting oxygen into energy.

Like everything before it, life increased in complexity as its requirement for survival drove it to trial different solutions to the problems it faced. Solving any problem always creates new, more complex problems. When the first animals came onto the land to find food, they had to develop solutions, such as legs, lungs, to deal with this new environment.

Photo by Fakurian Design on Unsplash

Consciousness Evolution

After an unfathomably long time, something incredible happened. Life increased complexity so much that a brain able to comprehend its own existence was formed. This brain not only solved problems, as brains before it did, but it built upon ideas. It developed the same skills as nature itself, evolving ideas that increased the complexity of the universe. *These self acknowledging brains loosely described this phenomenon as consciousness, and these complexity-increasing ideas as technology.

Consciousness is a feedback to nature. For the first time in history, nature is no longer the main driver of complexity, the complexity itself is driving further evolution.

Now I’m not talking about transhumanism or notions of driving our own evolution to become more than human. I’m talking about the ability to create ideas. Ideas drive evolution. Like nature before it, the function of ideas developed by consciousness is to increase complexity. This evolves the course of the universe itself.

Ideas are created by combining previously existing concepts to solve a problem. These ideas then create new problems that need to be solved and so new ideas always add to the ever increasing complexity.

Evolution = increasing complexity, using ideas as the mechanism.

Evolution began as hydrogen atoms evolving into complex molecules. It is not restricted to the evolution of plants and animals. Charles Darwin’s identification of the evolution of the species was just a very small part of a much bigger picture.

It’s important to remember that this is still part of that original chain reaction. Evolution is the function of the universe itself.

I’ll say that again.

Evolution is the function of the universe itself.

To appreciate this, you have to acknowledge that the true definition of evolution is to increase complexity. That is all that has ever happened. From the increasing complexity of atoms to the development of life, the improvement of life and then the development of consciousness, the universe is just a complexity factory. That’s what it does.

Photo by NASA on Unsplash

Our Purpose

What is profound about this is realising where we fit it into it all. We’ve often wondered what is the reason for living, and when you look at the big picture like this, it becomes obvious.

We are just here to continue the evolution of complexity.

Of course this is both empowering and humbling. It turns out that human beings could be pivotal to the evolution of the universe. Looking back at how the universe has evolved we can predict that we, (or another version of consciousness that will emerge in the event of our extinction), will contribute to the emergent complexity of the universe. Our ideas will progress the complexity and will take the universe to the next level. Yet at the same time, we realise that we are simply a result of what the universe was doing anyway. We are not the ‘pinnacle’ of evolution, we are just ‘where it’s at now’. There is much more to come, and perhaps we are just an insignificant speck in the development of something much grander.

What if the development of consciousness is just an embryo of a super-brain and concepts such as individuality are simply mechanisms in its development? Kinda makes the humbling from Darwin and Copernicus seem like a mild slap. The ego of humanity takes yet another beating…

But even if this is the case, there’s no need to feel down. Now we know our purpose, we know what to focus on. We have meaning and direction. We are here to drive complexity, by creating ideas which are solutions to problems.

Photo by NASA on Unsplash

Society Evolution

And there is more. Since we first started integrating concepts and evolving ideas, we have been part of something even more complex than our minds: Society. The hive-mind of ants or bees is one thing, but the hive mind of an entire planet of concscious, problem solving, dextrous human beings is quite another. Society adds yet another level of complexity to the evolution of the universe.

Society has only existed in any sort of complex form for at most a few hundred thousand years, but until the birth of the internet, it was fragmented and relatively simple. Now, people have the potential to connect to any of seven billion others. Cultures merge. Belief systems collapse and form in seconds. Values shift and perceptions alter. More possibilities present themselves. When the internet exploded, our day-to-day functioning as a society hit the knee of an exponential curve in terms of complexity.

This is not to be feared. This is the destiny of evolution, the destiny of the universe. Yes, we will create ideas to temporarily simplify many concepts. But this is just so that we can then use this simplification as a step up to further complexity. Like a fractal.

Photo by Martin Rancourt on Unsplash

For example, Google simplified searching the internet, but in doing so empowered people to solve more complex problems than ever before, due to the ease of access to new concept-combinations.

Technology is advancing at a accelerating rate, enabling all sorts of new opportunities, problems and the ideas required to solve them. The more technology, the more ideas. The more ideas, the more complex society becomes. Even the power of our brains could soon be artificially increased, adding to our ability to drive further complexity.

So immerse yourself. Ride the wave of nature and accept our destiny — the perpetuation of complexity.

Tuesday, 11 January 2011

Product Longevity in a World Driven by Consumption

It should be obvious that Product Longevity is incompatible with capitalism as we know it. Our system relies on continuous consumption to perpetuate the workforce, grow enterprise, and maintain profits. While there may be a capitalist incentive to produce long lasting products in some industries, the fact remains that breaking down just outside of the warranty period is the most profitable circumstance.

Constant technological advancements seem to be a licence for excessive consumption, ongoing changes justifying the buy-and-throw-away culture. Things, in general, are not designed to be upgraded, they are designed to be superseded and replaced.

How do we address this from a sustainability perspective?

It’s becoming increasingly apparent that the decoupling of monetary gain from production is imperative.

Would it be possible (profitable) for a company to start up, complete a production run of one very long lasting product, and then move onto another, different product? Maybe, but only if the company’s infrastructure was designed in such a way as to allow for cheap and fast transformation to a new product line. There may still be difficulties supplying genuinely consumable products, and fast advancing technological products, and dealing with any products that break down.

Fundamentally, any sustainable production model would never be preferable to any company whose priority is to grow and make profit. However, it might be demanded as more people realise the importance of sustainability.

We must think about how to produce goods that integrate product longevity while also allowing for ongoing technological enhancement, and effectively dealing with product failures.

It might then be in the interests of a sustainable community to form their own production facilities not concerned with profit, similar to a cooperative but with a focus on sustainability over profit. Working outside the monetary system, this would undermine any companies working within it, out-competing them.

This may allow a community enterprise to run indefinitely, albeit without growth.

Such an enterprise could adopt sustainable production methods such as modular design. An example of such a project is PhoneBloks, who propose a mobile phone design where the base of the phone is produced and an array of components can then be added or removed,  personalizing the device and allowing for ease of replacing damaged parts. Laptops, tablets, or any handheld device could make use of this platform, such as washing machines, fridges, gardening tools, or even cars.

Other goals of such an endeavour would include; reducing product duplication, reducing waste, building more robust products, and incorporating more reusable components into every design.

This model may also allow for greater input during the design process. The internet can allow for a more collaborative approach to design as well as production. This is already happening, it’s only a matter of time before the designs are good enough that these products take off. Then, the concepts of open, sustainable, modular, and, most significantly, profitless design enter the mainstream.

How will profit-driven corporations respond?

Tuesday, 14 September 2010

How Designer Babies Highlight Society's Immaturity

The question of designer babies is usually met with disdain. You don't even have to be religious to object to the idea of customising a human before it's born. Indeed, this concept doesn't just "go against nature", it makes us question what it means to be human.

The possibility of customising an embryo with the view to having an "enhanced" child opens up a veritable test tube of questions. What are the implications of being able to set a child's intelligence, their strengths, their abilities?

Then there is the questions that really hit a nerve: "Would people chose not to have a black baby when they know it will be subject to persecution and prejudice?" The whole issue is surrounded by frightening dilemmas.

The problem is, it's already here. We currently screen embryos for birth defects such as spina bifida, and many would argue that prevention or removal or deficiencies is a form of enhancement.

Of course, we can try to separate prevention of negative from implementation of positive. Then maybe the fascists - I mean conservatives - among us could make a law preventing any form of positive enhancement - but would that be ethical? If we have the potential to allow someone to have a 500 year lifespan - is it right to withhold that from them before they're born and can make a choice about it?

Dr Robert Sparrow makes the profound observation that a child can never reprimand its parents for not enhancing them - because if they had, it would have meant choosing a different embryo and the child wouldn't have been born anyway. However, this of course is only true for embryo screening, so is a bit of a short term argument and, in my opinion, a moot point.

Laws are like band-aids on cancer

I frequently point out on this blog and elsewhere that laws and restrictions are not solutions under any circumstances, and this is especially true when it comes to technology and its ability to undermine and disrupt our paradigms. Attempts to control by prohibition are primitive, ineffective, often un-ethical, they have unforeseen and unrelated side effects, and are usually done for the wrong reasons. This issue of designer babies and human enhancement needs far more thought than that which can be provided by narrow-minded rule-setting  waste-of-space bureaucrats.

We went past the point long ago when lawmakers were able to anticipate and knowledgeably counteract dangers arising from technological developments. Technology is enabling these society-altering options not only at a pace that can't be kept up with, but that can't really be understood. They change our paradigms yet we attempt to create rules based on the old ones. Just look at the feeble attempts to control the Internet as a prime example.

If we get this right, we could have a society of healthy, intelligent, long living (and therefore possibly wise) super humans. With this being the potential, how can we ever hope to keep it at bay forever?

Turning what we know on its head

When significant pre-birth human enhancement does arrive, there are still many ethical issues and implications we're going to face, and we need to be thinking about them now. For example, it probably won't take us long to acquire a disdain for anything "less than perfect". While some definitions of perfection will obviously vary, some won't - a longer lifespan and a higher intelligence will be desirable to most people - even if they chose not to use them.

Will we see a separation of the "enhanced" and "non-enhanced" - as if we don't have enough excuses to hate each other - or will the "none-enhanced" simply be subjected to the peer pressure similar to that of mobile phone ownership? Either way, such enhancements would need to be affordable to the masses. Otherwise, we have another issue:

A Right or a Privilege?

What effect will economics have on designer children? Especially in countries with no socialised health care - it's likely that some of the enhancements will be the sole benefit of those with money, perhaps further exacerbating the wealth gap. If it's morally imperative not to withhold enhancement - how does this fit in with the monetary system?

Isn't being born healthy everyone's birthright in a civilised society? Or does that depend on the financial cost? (How exactly do we set the definition of healthy?) If it's not economically viable to give all desired enhancement to everyone - we will almost certainly end up with humans of varying levels of enhancement.

This will be significant, because among other things, it will affect dynamic of the workforce. Those without enhancement because they started off poor would only be able to get the lower paid jobs (if any at all) because of their "disability".

In the meantime, those with enhancement will have certain advantages. Suppose we breed one person who is more intelligent and charismatic than anyone on the planet - and they ran for president? Firstly, this intelligence could give them an unfair(?) advantage over all other human beings, but secondly, why shouldn't they be in charge, if they're likely to do a better job than anyone else?

A Real Game Changer

I could probably expand on these ethical dilemmas all day. But the common denominator is that our current systems, our current ways of thinking, aren't really compatible with our expanding options. Just as nanotechnology might undermine scarcity, and virtual reality might undermine our entire physical reality, "designer babies" open up our world to a host of new possibilities - many of which we are just not set up for. These possibilities will force us to question our deep rooted beliefs and turn our society upside down.

Because of the effect on the individual, it's likely that this will be the tipping point - the point where our advances shift the balance of power from politics to technology.


Image by

Wednesday, 8 September 2010

Could Artificial Intelligence Development Hit a Dead End?

Kurzweil and his proponents seem to be unshakable in their belief that at some point, Advanced Artificial General Intelligence, Machine Sentience, or Human Built Consciousness, whatever you would like to call it, will happen. Much of this belief comes from the opinion that consciousness is an engineering problem, and that it will, at some point, regardless of its complexity, be developed.

In this post, I don't really want to discuss whether or not consciousness can be understood, this is something for another time. What we need to be aware of is the possibility of our endeavours to create Artificial Intelligence stalling.

Whatever happened to...Unified Field Theory?

It seems sometimes, the more we learn about something, the more cans of worms we open, and the harder the subject becomes. Sometimes factors present themselves that we would not have expected to be relevant to our understanding.

Despite nearly a century of research and theorizing, UFT remains an open line of research. There are other scientific theories that we have failed to completely understand, some that have gone on for so long that people are even losing faith in them, and are no longer pursuing them.

Whatever happened to...The Space Race?

Some problems are just so expensive that they are beyond our reach. While this is unlikely to be true forever, it could have a serious and insurmountable effect on Artificial Intelligence development. Exponentially increasing computer power and other technology should stop this being a problem for too long, but who knows what financial, computing, and human resource demands we will find ourselves facing as AI development continues.

Whatever happened to...Nuclear Power?

Some ideas just lose social credibility, and are then no longer pursued. If we are able to create an AI that is limited in some way and displays a level of danger that we would not be able to cope with if the limitations were removed, it's most likely that development will have to be stopped, either by government intervention or simply social pressure.


I think it's unlikely that the progress of anything can be stopped indefinitely. It requires definite failure by an infinite number of civilisations. Anyone familiar with the Fermi Paradox and the "All species are destined to wipe themselves out" theory will have a good understanding of this concept. 100% failure is just not statistically possible indefinitely when it depends on a certain action not being performed.

However, it is certainly likely that our progress will be stumped at some point. Even with the accelerating nature of technology, this could cause an untold level of stagnation.

We should try and stay positive of course, but it would be naive to ignore the chance that, for some time at least, we might fail.


I'm currently attending the Singularity Summit AU in Melbourne. There were a couple of talks on Tuesday night and there will be a whole weekend of fun starting on Friday night. :) Therefore you can expect a few posts to be inspired from my conversations with other future-minded thinkers over the coming days!

image by rachywhoo